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Abstract

We study a simple network with two parallel batch service queues, where
service at a queue commences when the batch is full and each queue is served
by infinitely many servers. A stream of general arrivals observe the current
state of the system on arrival and choose which queue to join to minimize
their own expected transit time. We show that for each set of parameter
values there exists a unique user equilibrium policy and that it possesses
various monotonicity properties. User equilibrium policies for probabilistic
routing are also discussed and compared with the state-dependent setting.

1 Introduction

It is well known that networks where individuals can choose their own route through
the system may experience far worse performance than that seen under system opti-
mal routing (for instance, Bell and Stidham[6], Cohen and Kelly [15] and Whitt [33]).
This is an important issue for both communication and transportation networks –
see Patriksson [24] for an overview of traffic assignment problems and Roughgarden
and Tardos [25] for a discussion of selfish routing in communication networks.

The model we consider in this paper is motivated primarily by the problem of
selfish routing choices in transportation applications and is a simple parallel queueing
network with two routes from a source to a common destination (see Figure 1). The
network consists of two batch service queues with batch sizes Ni, i = 1, 2 and each
queue has an infinite number of servers, i.e. both routes are M/M (Ni)/∞ queues
with Ni ≥ 2. There are three independent Poisson arrival streams: two intrinsic
arrival streams (at rate σ1 and σ2 to queue 1 and queue 2 respectively), and a stream
of general arrivals at rate λ who may choose to join either of the two queues. In this
system users may prefer to join a longer queue with more customers awaiting service
if the free capacity is lower than in the other queue, since the expected waiting time
for service may then be shorter. The service time at each queue is exponentially
distributed with rate µi, i = 1, 2. Service commences at a queue when its batch it
full. Neither jockeying nor reneging is allowed, so that once a customer has joined
a queue, they must stay in their batch of their queue until their batch service is
completed. All inter-arrival times and service times are independent of each other.
Figure 1 shows the structure of the system. Applications of batch service queues
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include examples of public transportation, such as airport shuttle buses that leave
when full (Afimeimounga et al. [1], [2] and Jia [20]). A modified model where the
batch service may commence before the batch is full is more generally applicable to
bus and shared taxi services.

In this paper we concentrate mostly on state-dependent routing where routing
decisions made by general arrivals depend on both the parameter values of the
system (arrival and service rates and batch sizes) and the instantaneous state of the
system when a general arrival occurs. However, we do also consider probabilistic
routing for general arrivals, which corresponds to the case where an individual’s
knowledge of the system is limited to the parameter values, and information about
the instantaneous state of the system is not available when routing decisions are
made. This may be a more realistic model for systems where individuals accumulate
knowledge of the system over a period of time, and routing patterns change gradually
in response to that. We give examples showing that state-dependent routing may
lead to shorter delays – that is, increased knowledge of the instantaneous state of
the system may lead to improved performance overall – although unlike for system
optimal policies, it is not always the case that increasing the state information on
which decisions are based leads to improved performance.

Routing problems such as these fall within a class of optimization and control
problems known as dynamic games (see e.g. [4, 3] and the references therein). We
are interested here in minimizing delay, but other forms of performance measure
may also be considered (for instance, blocking probabilities in loss networks). In
a game with a fixed finite number of players, a strategy is a Nash equilibrium [23]
if no player can benefit by changing her strategy, provided all other players keep
their strategies unchanged. Wardrop [31] studied traffic assignment problems in the
1950s and defined equilibria in the context of road networks with infinitely many
road users such that each individual has an infinitesimal effect upon the system.
Under a Wardrop equilibrium, the journey times on all routes in use are equal,
and less than those which would be experienced by a single vehicle on any unused
route [31]. We are interested in types of decision policies, known as user equilibrium
or user optimal policies, under which no individual can improve his/her perceived
travel time by unilaterally adopting a different decision policy.

In those models where the delay experienced by an arrival depends only on the
current state of the system, user equilibrium polices are relatively easy to find (see
e.g. Winston [34] and Spicer and Ziedins [26]). In the model considered here, how-
ever, a customer’s delay may depend not only on the current number of customers
in the system, but also on routing decisions of subsequent arrivals. The queueing
network in which Braess’s paradox is commonly studied is an example of a sys-
tem where this is the case (Braess [9], translated in Braess et al. [10], Cohen and
Kelly [15] and Calvert et al. [13]). More recently, Altman and Shimkin [5] consid-
ered a system where customers choose between a processor-sharing queue and an
infinite server queue. They used a coupling argument to show that a unique user
equilibrium policy exists and possesses a certain natural property. Ben-Shahar et
al. [7] extended their results to multiple customer types, and Brooms [11] studied
a related system. Hassin and Haviv [19] studied user decisions in a network with
an infinite server queue. For their models a one-dimensional state representation of
the system suffices to calculate expected delays, since delays at the infinite server
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queue do not depend on the length of the queue. Afimeimounga et al. [1, 2] studied
a system that is perhaps most closely related to the one we consider here, consist-
ing of a batch-service queue and an M |M |1 queue, under both probabilistic and
state-dependent routing, which did require a two-dimensional state representation.
For the state dependent case they showed, as we will do here, the existence and
uniqueness of the user equilibrium. In work in progress [14] the authors study a
parallel system with two processor sharing queues.

Since performance under selfish routing may be considerably worse than at the
system optimum, it is perhaps not surprising that changing parameters with the in-
tention of improving performance (for instance, by increasing service rates, or adding
routes to a network) may instead have a negative effect on system performance. This
was first observed with Braess’s paradox ([9, 10]) with the addition of an extra route
to the system, and later authors have shown similar paradoxical effects can occur
when service rates are increased (see, for instance, Calvert [12], Downs [16], Thom-
son [28], and Afimemimounga et al. [1, 2] for a discussion of the Downs-Thomson
paradox). Numerical examples show that for our network, increasing service rates
may lead to greater delays under the user equilibrium. As in [2], in our examples
this non-monotonicity effect is considerably reduced under state-dependent routing
as opposed to probabilistic routing – increasing information given to the users may
improve performance in this respect.

Finally, we mention briefly that there is a long history of studying optimal
policies for parallel queues, whether they be the user equilibrium policies that we
study here, or system optimal policies (see e.g. Winston [34], Weber [32], Koole
et al. [21] and Whitt [33] and the references therein). Walrand [30] and Gelenbe
et. al. [18] give excellent general introductions to queueing networks and Boxma et
al. [8] provide a more recent overview of solution methods for performance analysis
of parallel and distributed systems. The results in this paper rely heavily on use of
the coupling method. Excellent introductions to these can be found in Lindvall [22],
Thorisson [29], and El-Taha and Stidham [17] .

The structure of the paper is as follows. In Section 2 we introduce our basic no-
tation, formally define the (expected) delay and the user equilibrium, and state our
main results. In Section 3, using an explicit construction and coupling arguments we
prove our main results on existence and monotonicity properties of state-dependent
user equilibrium policies for the parallel batch service systems under consideration.
In Section 4 we discuss probabilistic routing and give numerical results comparing
user equilibria in the stationary regime under probabilistic routing with the state-
dependent setting. The results suggest that arrivals who incorporate full knowledge
of the current state of the system in their individual decision making can lead to
a reduction in non-monotonicity effects and reduce the overall delay in the system.
We conclude with possible extensions to the model and further discussion.

2 Notation and definitions

The network of interest consists of two M/M (Ni)/∞ queues in parallel, with batch
sizes N1 and N2, service rates µ1 and µ2 and dedicated arrival rates σ1 and σ2
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for queues 1 and 2 respectively. In addition general arrivals occur at rate λ, and
each such arrival makes an instantaneous decision of which queue to join based
on knowledge of the state of the system immediately prior to their arrival, the
parameter values and the queueing mechanism. All inter-arrival and service times
are independent of each other and exponentially distributed; and the decisions made
by general arrivals are also independent and time-homogeneous, given the state of
the system.

σ1 // Queue 1
µ1

''
λ //

""

<<

Destination

σ2 // Queue 2

µ2

77

Figure 1: The network diagram for two M/M (Ni)/∞ queues

To define the process associated with this system, we fix N1, N2 and Γ =
{λ, σ1, µ1, σ2, µ2, p̃}, and denote the state of the system at a given time t by Z(t) =(
Z1(t), Z2(t)

)
where Zi(t) is the number of customers awaiting service in queue i

at time t, i = 1, 2. Suppose that a customer/user arrives at time t when the sys-
tem is in state n = (n1, n2) (we write this as Z(t−) = (n1, n2)). If that user joins
queue 1, then Z(t) = ((n1 + 1)modN1, n2), while if the user joins queue 2, then
Z(t) = (n1, (n2 + 1)modN2). Note that if Zi(t

−) = Ni − 1 and the arrival joins
queue i, then since service commences immediately once the batch is complete, the
number of customers waiting for service in queue i drops to zero, i.e. Zi(t) = 0.
Hence, we define the state space of the network to be S = {n = (n1, n2) : 0 ≤ ni ≤
Ni − 1, ni ∈ Z, for i = 1, 2}. For notational convenience, we set e1 = (1, 0), and
e2 = (0, 1). For n ∈ S we write

n + ẽi =

{
((n1 + 1)modN1, n2), if i = 1

((n1, (n2 + 1)modN2), if i = 2.

In every state n ∈ S, an arriving general customer must decide which queue to
join. Hence, we make the following definitions:

Definition 2.1. A decision policy D = {D0, D1, D2} for S is a partition of S such
that if a general customer arrives to find the system in state n = (n1, n2) ∈ Di,
i = 1, 2, then he/she joins queue i; if n ∈ D0, then the general customer joins queue
1 with probability p̃, and queue 2 with probability 1 − p̃. The set of all decision
policies is denoted by D = D(S). For fixed Γ, the process operating under D ∈ D is
denoted by ZD = {ZD(t)}t≥0.

Let QD be the Q-matrix of the process ZD operating under decision policy
D ∈ D with parameters Γ. The transition rates from state n = (n1, n2) to n′ =
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(n′1, n
′
2) 6= n are

QD(n,n′) =


σ1 + λ · In∈D1 + p̃λ · In∈D0 , if n′ = n + ẽ1

σ2 + λ · In∈D2 + (1− p̃)λ · In∈D0 , if n′ = n + ẽ2

0, otherwise,

where IA is an indicator function taking the value 1 if A is true, and 0 otherwise.
Let Hi = {n = (n1, n2) : ni = 0} ⊂ S, i = 1, 2. Then the first hitting time or

reaching time to Hi from state n is defined as:

Definition 2.2. Given a process ZD such that ZD(t) = n let

TZi;D(n; t) = inf{s ≥ 0 : ZD(t+ s) ∈ Hi}, i = 1, 2. (1)

be the first hitting time to Hi given that ZD(t) = n.

Note that Ti;D(n; t) represents the waiting time (from time t) until service com-
mences at queue i, if the system is in state n ∈ S at time t. The distribution of
TZi;D(n; t) does not depend on t and we will often drop this from the notation. We
also write Ti;D(n) = TZi;D(n) when the process ZD is clear.

Definition 2.3. Denote by mi;D(n) = E[Ti;D(n)], i = 1, 2, the expected waiting time
via queue i until service commences when the system is in state n ∈ S, i.e. ZD(t) =
n.

Definition 2.4. Let zi;D(n) be the expected transit time through the system (includ-
ing the service time) for a general customer arriving at time t if ZD(t−) = n ∈ S
and ZD(t) = n + ẽi, that is, for a general arrival who joins queue i when the system
is in state n ∈ S.

If a general arrival joins queue i when ni = Ni − 1, then that arrival does
not wait for service since s/he has completed the current batch and her/his arrival
triggers an immediate service commencement for that batch at queue i. Thus the
expected transit time for the last arrival in a batch is just the expected service time
for queue i. Now suppose that a general arrival joins queue i when the process ZD
is in state n with ni < Ni − 1. Then the process jumps to state n + ei, and thus
zi;D(n) is the expected hitting time to Hi from state n+ei plus the expected service
time for queue i. Hence, for i = 1, 2,

zi;D(n) =
1

µi
, if ni = Ni − 1; (2)

zi;D(n) = mi;D(n + ei) +
1

µi
, ∀ ni < Ni − 1. (3)

Let Λ = σ1 +σ2 +λ. If ni < Ni−1, in order to find zi;D(n), we condition on the
first jump of the process after a general arrival has joined queue i. The time to the
next event is exponentially distributed with mean 1

Λ
. Given D ∈ D, the next change

of state can be due to an intrinsic arrival to queue 1 or queue 2, or a general arrival,
in which case the resulting state depends on D. Therefore if 0 ≤ n1 < N1 − 1,
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z1;D(n) =
1

Λ
+
σ1 + λ · I{n+e1∈D1} + p̃λ · I{n+e1∈D0}

Λ
z1(n + e1)

+
σ2 + λ · I{n+e1∈D2} + (1− p̃)λ · I{n+e1∈D0}

Λ
z1(n + ẽ2).

(4)

Similarly if 0 ≤ n2 < N2 − 1,

z2;D(n) =
1

Λ
+
σ1 + λ · I{n+e2∈D1} + p̃λ · I{n+e2∈D0}

Λ
z2(n + ẽ1)

+
σ2 + λ · I{n+e2∈D2} + (1− p̃)λ · I{n+e2∈D0}

Λ
z2(n + e2).

(5)

It can be shown that this finite set of linear equations has a unique solution for all
λ, σ1, σ2 > 0. We now define user equilibrium policies D∗ formally as follows.

Definition 2.5. A policy D∗ ∈ D is a user equilibrium policy for (N1, N2,Γ) if
∀ n ∈ S,

n ∈


D∗1, ⇐⇒ z1;D∗(n) < z2;D∗(n)

D∗0, ⇐⇒ z1;D∗(n) = z2;D∗(n)

D∗2, ⇐⇒ z1;D∗(n) > z2;D∗(n).

We now give the formal definition of monotonicity as follows.

Definition 2.6. A policy D = {D0, D1, D2} is monotone, if it satisfies the following
two conditions for each i, j ∈ {1, 2}, i 6= j:

1. n ∈ Di ∪D0 ⇒ n + ei ∈ Di, ∀ n ∈ S such that ni < Ni − 1;

2. n ∈ Di ∪D0 ⇒ n− ej ∈ Di, ∀ n ∈ S such that 0 < nj.

The following two theorems are the main results of this paper.

Theorem 2.7. For each set of (non-zero) parameter values (N1, N2,Γ) there exists
a unique user equilibrium policy, D∗.

Theorem 2.8. Any user equilibrium D∗ is monotone.

Further monotonicity results (in terms of varying Γ) appear in Section 3.3.

3 Uniqueness and monotonicity

In this section, we prove a number of important lemmas and use these to prove the

main results of this paper. We use the notation X
st

≤ Y if P(X ≤ x) ≥ P(Y ≤ x)
for every x ∈ R. Throughout this section N1, N2, and Γ are fixed.
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3.1 Preliminary lemmas

Definition 3.1. Let i, j ∈ {1, 2}, i 6= j. A policy D = {D0, D1, D2} is m-level
monotone for queue i, m ∈ {1, 2, . . . , Ni}, if it satisfies the following two conditions:

1. n ∈ Di ∪D0 ⇒ n + ei ∈ Di, ∀ Ni −m ≤ ni < Ni − 1;

2. n ∈ Di ∪D0 ⇒ n− ej ∈ Di, ∀ 0 < nj ≤ Nj − 1.

Definition 3.2. We say D ∈ D is monotone for queue i, if D is Ni-level monotone
for queue i, i = 1, 2.

Definition 3.3. A policy D ∈ D is (ξ, τ)-level monotone, if it is ξ−level monotone
for queue 1 and τ−level monotone for queue 2.

Clearly a policyD ∈ D is monotone (Definition 2.6) if and only if it is (N1, N2)−level
monotone.

Lemma 3.4. Let u = (u1, u2),v = (v1, v2) ∈ S satisfy one of the following condi-
tions.

(I) u2 − v2 ≥ v1 − u1 ≥ 0;

(II) u2 − v2 ≥ N1 − (u1 − v1) > 0.

Suppose that D ∈ D is τ = N2 − v2 level monotone for queue 2. Then T2;D(u)
st

≤
T2;D(v). Furthermore, if u2 > v2, then m2;D(u) < m2;D(v).

Proof. The proof of this lemma, as for several of the results below, relies on a
coupling argument. We construct a joint process {(Y,W )(t)}t≥0 with state space
S× S such that both Y and W follow the law of ZD. Let

(Y,W )(0) =
(
(Y1, Y2), (W1,W2)

)
(0) = (u,v).

The transitions of this joint process are such that Y and W make the same transition
whenever possible, thus automatically preserving whichever of the conditions (I) or
(II) holds. In those cases where that is not possible, the transition is chosen so that
the new state still satisfies either (I) or (II). The joint process has the following
transitions for (a,b) ∈ S× S:

(i) At rate σ1 + λ · I{a,b∈D1} + p̃λ · I{a∈D0,b∈D0∪D1} + p̃λ · I{a∈D1,b∈D0},

(a,b) −→ (a + ẽ1,b + ẽ1).

(ii) At rate σ2 + λ · I{a,b∈D2} + (1− p̃)λ · I{a∈D0,b∈D0∪D2} + (1− p̃)λ · I{a∈D2,b∈D0},

(a,b) −→ (a + ẽ2,b + ẽ2).

(iii) At rate λ · I{a∈D1,b∈D2} + p̃λ · I{a∈D0,b∈D2} + (1− p̃)λ · I{a∈D1,b∈D0},

(a,b) −→ (a + ẽ1,b + ẽ2).
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(iv) At rate λ · I{a∈D2,b∈D1} + (1− p̃)λ · I{a∈D0,b∈D1} + p̃λ · I{a∈D2,b∈D0},

(a,b) −→ (a + ẽ2,b + ẽ1).

Since we are interested in the hitting time to the set H2 for X ∈ {Y,W},
let TX2 (a,b; t) = inf{s ≥ 0 : X2(s + t) ∈ H2} be the marginal hitting time to
H2 at time t if the joint system is in state (a,b) at time t. We will often write
TX2 (a,b) for TX2 (a,b; t) since the distribution of TX2 (a,b; t) does not depend on t.
We will show that for any pair of states (a,b) satisfying either of conditions (I)
or (II), T Y2 (a,b; 0) ≤ TW2 (a,b; 0) almost surely. We do this by showing that with
probability 1, Y2(t) ≥ W2(t), ∀ 0 ≤ t < T Y2 (a,b; 0).

Notice that condition (I) includes the case a = b. If the joint process jumps into
state (a, a), then Y = W with probability 1, and for any a ∈ S, T Y2 (a) = TW2 (a).
Henceforth, we assume a 6= b.

Denote by (a′,b′) the resulting state of the joint system immediately after a
transition from state (a,b). We discuss each of the transitions (i) to (iv) in turn
and show that when (a,b) satisfies either of conditions (I) and (II), so does (a′,b′).

Case (i): if max(a1, b1) < N1− 1, then (a′,b′) = (a + e1,b + e1) and whichever con-
dition (a,b) satisfied is preserved (i.e. is also satisfied by (a′,b′)). If max(a1, b1) =
N1−1, there are three cases: if a1 = b1 = N1−1, then (a,b) satisfies condition (I) and
(a′,b′) =

(
(0, a2), (0, b2)

)
, which clearly preserves condition (I); if a1 < b1 = N1− 1,

then (a′,b′) =
(
a+e1, (0, b2)

)
, so a′2−b′2 = a2−b2 ≥ N1−(1+a1) = N1−(a′1−b′1) > 0

and condition (II) is satisfied; if b1 < a1 = N1 − 1, then (a′,b′) =
(
(0, a2),b + e1

)
,

so a′2 − b′2 = a2 − b2 ≥ N1 − (a1 − b1) = N1 − (N1 − 1 − b1) = b′1 − a′1, and thus
condition (I) is satisfied.

Case (ii): if a2 = N2−1, a′ = (a1, 0) ∈ H2 and T Y2 (a,b) ≤ TW2 (a,b). If a2 < N2−1,
then (a′,b′) = (a + e2,b + e2) and it is trivial that whichever condition held for
(a,b) is preserved.

Case (iii): since D is τ = N2 − b2 level monotone for queue 2, by Definition 3.1, if
(a,b) satisfies condition (I), then I{a∈D1,b∈D2} = I{a∈D0,b∈D2} = I{a∈D1,b∈D0} = 0.
If (a,b) satisfies condition (II), then there are two cases: if a1 < N1 − 1, then
(a′,b′) = (a + e1,b + e2) and N1 − (a1 − b1) > N1 − (N1 − 1 − b1) = b1 + 1 ≥ 1,
so that a′2 − b′2 = a2 − (b2 + 1) ≥ N1 − (a1 − b1) − 1 = N1 − (a′1 − b′1) > 0, and
condition (II) is preserved; if a1 = N1 − 1, then (a′,b′) = ((0, a2),b + e2) and
a′2− b′2 = a2− (b2 + 1) ≥ N1− (N1−1− b1)−1 = b1 = b′1−a′1 ≥ 0, so that condition
(I) is satisfied.

Case (iv): if a2 = N2 − 1, then a′ = (0, a2) ∈ H2 and T Y2 (a,b) ≤ TW2 (a,b). If
b2 < a2 < N2 − 1, suppose (a,b) satisfies condition (I), if b1 < N1 − 1, (a′,b′) =
(a + e2,b + e1), then a′2 − b′2 ≥ b1 − a1 + 1 = b′1 − a′1 ≥ 0, thus condition (I) is
preserved; if b1 = N1 − 1, (a′,b′) = (a + e2, (0, b2)), then a′2 − b′2 = (a2 + 1)− b2 ≥
(N1 − 1) − a1 + 1 = N1 − (a1 − 0) = N1 − (a′1 − b′1) > 0, so condition (II) is
satisfied. Suppose that (a,b) satisfies condition (II), (a′,b′) = (a + e2,b + e1), then
a′2 − b′2 = (a2 + 1)− b2 ≥ N1 − (a1 − b1) + 1 = N1 − (a′1 − b′1) > 0, so condition (II)
is preserved.

In summary, if (a,b) satisfies condition (I) or (II), so does the resulting state
(a′,b′) and we observe that any state (a,b) satisfying condition (I) or (II) also
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automatically satisfies a2 ≥ b2. Thus we have shown that if (Y,W )(0) = (u,v)
satisfies either condition (I) or (II) then for each t, 0 ≤ t < T Y2 (u,v; 0), the joint
process (Y,W )(t) satisfies either condition (I) or (II), and hence Y2(t) ≥ W2(t) for
0 ≤ t < T Y2 (u,v; 0) with probability 1, which implies that T Y2 (u,v; 0) ≤ TW2 (u,v; 0)

almost surely, i.e. T2(u)
st

≤ T2(v).
Let TY = T Y2 (u,v; 0) and TW = TW2 (u,v; 0) and consider the case where u2 >

v2. We observe that there is a positive probability that the nextN2−u2 customers are
all intrinsic arrivals to queue 2. Since Y has more customers in queue 2, with positive
probability it will complete the queue 2 batch before W does, thus P(TY < TW ) > 0.
Hence m2(u) = E[TY ] < E[TW ] = m2(v). �

Lemma 3.5. Let a = (a1, a2), a′ = (a1, a
′
2) ∈ S be such that a2 > a′2. Suppose

that D ∈ D is τ−level monotone for queue 2, where τ = N2 − (a′2 + 1), then
z2;D(a) < z2;D(a′).

Proof. When a2 = N2− 1, by (2) and (3), we have z2(a′) = m2(a′+ e2) + 1
µ2
> 1

µ2
=

z2(a). When a′2 < a2 < N2 − 1, condition (I) holds for (a, a′) and so by Lemma 3.4
we have z2(a) = m2(a + e2) + 1/µ2 < m2(a′ + e2) + 1/µ2 = z2(a′). �

Remark: Both Lemma 3.4 and 3.5 refer to queue 2, however corresponding results
hold for queue 1 by relabeling the queues.

If in Lemma 3.4, we strengthen the conditions on the starting states, then the
assumption of monotonicity is no longer required as per the following lemma.

Lemma 3.6. Let D ∈ D. Then z1;D(u) ≥ z1;D(v) and z2;D(u) ≤ z2;D(v) if either
of the following hold:

(A) u2 − v2 = v1 − u1 ≥ 0;

(B) u2 − v2 = N1 − (u1 − v1) > 0.

Furthermore, if u2 − v2 = v1 − u1 > 0, then the inequalities are strict.

Proof. We omit the details of this proof as it follows from a similar coupling argu-
ment as in Lemma 3.4. �

Lemma 3.7. Let k, l, i ∈ {1, 2}, k 6= l. For any user equilibrium policy D∗ ∈ D∗,
each of the following conditions implies n ∈ D∗i .

1. n + ek, n + el ∈ D∗i ;

2. n + ek ∈ D∗0, n + el ∈ D∗i ;

Proof. Without loss of generality, assume i = 1. From Definition 2.5, the user
equilibrium decision at a given state n ∈ S depends on the expected transit times
via each of the two queues.

Condition 1: By (4) and (5):

Λ · z1;D∗(n) = 1 + (λ+ σ1)z1;D∗(n + e1) + σ2 · z1;D∗(n + e2),

Λ · z2;D∗(n) = 1 + (λ+ σ1)z2;D∗(n + e1) + σ2 · z2;D∗(n + e2).
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Since n+ei ∈ D∗1 ⇒ z1;D∗(n+ei) ≤ z2;D∗(n+ei) for i = 1, 2, we thus have z1;D∗(n) ≤
z2;D∗(n), with strict inequality if any of the above are strict. By Definition 2.5, this
implies that n ∈ D∗1.

Condition 2: If k = 1 and l = 2, that is n + e1 ∈ D∗0, n + e2 ∈ D∗1, then:

Λ · z1;D∗(n) = 1 + (p̃λ+ σ1)z1;D∗(n + e1) + [(1− p̃)λ+ σ2]z1;D∗(n + e2),

Λ · z2;D∗(n) = 1 + (λ+ σ1)z2;D∗(n + e1) + σ2z2;D∗(n + e2)

= 1 + (p̃λ+ σ1)z2;D∗(n + e1) + [(1− p̃)λ+ σ2]z2;D∗(n + e2)︸ ︷︷ ︸
A

+ (1− p̃)λ[z2;D∗(n + e1)− z2;D∗(n + e2)]

Since n+e1 ∈ D∗0 ⇒ z2;D∗(n+e1) = z1;D∗(n+e1) and n+e2 ∈ D∗1 ⇒ z2;D∗(n+e2) >
z1;D∗(n + e2); and z2;D∗(n + e1) > z2;D∗(n + e2) by Lemma 3.6, we thus have
z2;D∗(n) > A > z1;D∗(n). This implies that n ∈ D∗1 by Definition 2.5. By symmetry,
it is easy to show that the argument also holds for k = 2 and l = 1. �

We now define the switching curve for queue i under policy D, i = 1, 2. Switch-
ing curves often arise naturally when seeking system optimal policies (see, for in-
stance, Stidham and Weber [27] for more information and references therein) and
we will also find them useful here.

Definition 3.8. For D ∈ D, let

b
(1)
D (n1) = sup{n2 : n ∈ D1}, 0 ≤ n1 ≤ N1 − 1,

b
(2)
D (n2) = sup{n1 : n ∈ D2}, 0 ≤ n2 ≤ N2 − 1,

and let

b
(i)
D = {b(i)

D (ni), 0 ≤ ni ≤ Ni − 1}

be the switching curve for queue i under policy D, i = 1, 2.

The following is an easy consequence of Definition 3.1 and 3.8. A similar result
can be derived for b

(1)
D (n1).

Lemma 3.9. A decision policy D ∈ D is m−level monotone for queue 2 if and
only if b

(2)
D (n2 − 1) ≤ b

(2)
D (n2), for all n2 such that N2 − m < n2 ≤ N2 − 1; and

n ∈ D2, ∀ n ∈ S such that N2 −m ≤ n2 ≤ N2 − 1, 0 ≤ n1 < b
(2)
D (n2).

3.2 Proof of main results

We are now ready to prove the main results of this paper, starting with Theorem
2.8, which says that for fixed parameter values, any user equilibrium is monotone.

Proof of Theorem 2.8. Let D∗ be a user equilibrium for (N1, N2,Γ). If µ1 < µ2

then ∀ n1 < N1−1, it is trivial that z1;D∗(n1, N2−1) > z1;D∗(N1−1, N2−1) = 1/µ1 >
1/µ2 = z2;D∗(n1, N2−1) (see e.g. (3)). Thus (n1, N2−1) ∈ D∗2 by Definition 2.5, and

D∗ is 1−level monotone for queue 2. Moreover b
(2)
D∗(N2 − 1) = N1 − 1. Similarly, if

10



µ1 > µ2 then (N1−1, n2) ∈ D∗1 for n2 ≤ N2−1, D∗ is 1-level monotone with respect

to queue 1, and b
(1)
D (N1 − 1) = N2 − 1. Now if µ1 = µ2 then (N1 − 1, N2 − 1) ∈ D∗0

as 1/µ1 = 1/µ2; and (N1 − 1, n2) ∈ D∗1 for n2 ≤ N2 − 2, and (n1, N2 − 1) ∈ D∗2
for n1 ≤ N1 − 2, D∗ is thus 1-level monotone with respect to queue 1 and queue 2
respectively. That is b

(1)
D (N1 − 1) = N2 − 2 and b

(2)
D (N2 − 1) = N1 − 2.

Suppose that D∗ is m−level monotone for queue 2 for some m > 0 (the proof is

analogous if we assume that D∗ is n−level monotone for queue 1). If b
(2)
D∗(N2−m) =

N1− 1 then trivially b
(2)
D∗(N2−m− 1) ≤ b

(2)
D∗(N2−m). If b

(2)
D∗(N2−m) < N1− 1, by

Definition 3.8, (n1, N2−m) ∈ D∗1 ∪D∗0 for n1 such that b
(2)
D∗(N2−m) < n1 ≤ N1− 1.

In particular, (N1 − 1, N2 −m) ∈ D∗1 ∪ D∗0. Then by Lemma 3.5, z1(N1 − 1, N2 −
m − 1) = z1(N1 − 1, N2 −m) ≤ z2(N1 − 1, N2 −m) < z2(N1 − 1, N2 −m − 1) ⇒
(N1 − 1, N2 − m − 1) ∈ D∗1. Thus b

(2)
D∗(N2 − m − 1) ≤ b

(2)
D∗(N2 − m) follows from

Lemma 3.7. Furthermore, since (b
(2)
D∗(N2 −m− 1), N2 −m− 1) ∈ D∗2, we also have

(n1, N2 −m − 1) ∈ D∗2 for 0 ≤ n1 < b
(2)
D∗(N2 −m − 1) by Lemma 3.7. Thus D∗ is

(m+ 1)−level monotone with respect to queue 2 (Lemma 3.9).
By induction on m, D∗ is N2-level monotone for queue 2. Observe that we also

immediately have b
(1)
D∗(n1 − 1) ≤ b

(1)
D∗(n1) for 0 < n1 ≤ N1 − 1, and n ∈ D∗1 for n

such that 0 ≤ n2 < b
(1)
D∗(n1). This implies that D∗ is also N1−level monotone. �

Definition 3.10. A policy D∗ ∈ D is a (ξ, τ)-level user equilibrium policy for
(N1, N2,Γ) if ∀ n ∈ S such that n1 ≥ N1 − ξ and n2 ≥ N2 − τ ,

n ∈


D∗1, ⇐⇒ z1;D∗(n) < z2;D∗(n)

D∗0, ⇐⇒ z1;D∗(n) = z2;D∗(n)

D∗2, ⇐⇒ z1;D∗(n) > z2;D∗(n).

Let D∗ξ;τ = D∗ξ;τ (N1, N2,Γ) denote the class of all (ξ, τ)-level user equilibrium policies.

Clearly a policy D∗ is a user equilibrium policy (Definition 2.5) for (N1, N2,Γ)
if and only if it is an (N1, N2)−level user equilibrium for Γ. Let D∗ = D∗(N1, N2,Γ)
be the class of all user equilibrium polices.

Proof of Theorem 2.7. We construct a user equilibrium policy D′, via a finite
sequence of elements s(r) of S and corresponding subpolicies on subsets S(r) of S. Let
s(1) = (N1 − 1, N2 − 1). If µ1 ≥ µ2, we put (N1 − 1, n2) ∈ D′1 for 0 ≤ n2 ≤ N1 − 2;
if the inequality is strict, we put s(1) ∈ D′1, otherwise s(1) ∈ D′0. Now define
S(1) = {N1 − 1} × {0, . . . , N2 − 1} and s(2) = (N1 − 2, N2 − 1). If µ1 < µ2 and we
put (n1, N2 − 1) ∈ D′2 for each n1 and define S(1) = {0, . . . , N1 − 1} × {N2 − 1}
and s(2) = (N1 − 1, N2 − 2). We proceed iteratively. Suppose that we have already
defined s(r) = s and specified D′ on

S(r) =
{
{s1+1, . . . , N1−1}×{0, . . . , N2−1}

}
∪
{
{0, . . . , N1−1}×{s2+1, . . . , N2−1}

}
.

As in Equations (2), (4) and (5) we can compute z1;D′(s) and z2;D′(s) based on
{D′(m,n) : (m,n) ∈ S(r)}. If z1;D′(s) ≤ z2;D′(s) then we put (s1, n2) ∈ D′1 for every
n2 < s2; and if the inequality is strict, we put s ∈ D′1, otherwise, put s ∈ D′0.
Then we define S(r+1) = S(r) ∪ {(s1, n2) : n2 ≤ s2} and s(r+1) = (s1 − 1, s2). If
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z1;D′(s) > z2;D′(s) and we put (n1, s2) ∈ D′2 for every n1 ≤ s1, and define S(r+1) =
S(r) ∪ {(n1, s2) : n1 ≤ s1} and s(r+1) = (s1, s2 − 1). We stop as soon as (0, 0) ∈ S(r)

for some r (at which point S(r) = S).
Observe that for any (N1, N2,Γ), the construction above gives rise to a single

decision policy D′ that is (N1, N2)−level monotone. Although we have not yet shown
that D′ is a user equilibrium, any user equilibrium for Γ must be equal to D′ (i.e. the
user equilibrium must be unique) as follows. If D∗ is a user equilibrium, then it must
agree with D′ at s(1) by Definition 3.10 and it must also agree with D′ on S(1) by
Theorem 2.8. Proceeding iteratively, D∗ must agree withD′ at each s(r) by Definition
3.10 as s(r) ∈ D′1 ⇔ z1;D′(s

(r)) < z2;D′(s
(r)) and s(r) ∈ D′2 ⇔ z1;D′(s

(r)) > z2;D′(s
(r))

by construction, and therefore D∗ agrees with D′ on each S(r) by Theorem 2.8,
whence D∗ = D′.

It remains to prove that D′ is a user equilibrium, i.e. that n ∈ D′1 ⇔ z1;D′(n) <
z2;D′(n), and n ∈ D′2 ⇔ z1;D′(n) > z2;D′(n), ∀n ∈ S. We already know this for
states s(r). Let s = s(r). If s1 = N1 − 1 and s ∈ D′1 ∪ D′0, then z1;D′(s − ke2) =
z1;D′(s) ≤ z2;D′(s) < z2;D′(s− ke2) for k ≥ 1 by Lemma 3.5. Similarly if s1 = N1− 1
and s ∈ D′2, z1;D′(s− ke1) > z2;D′(s− ke1).

Assume that D′ is an (N1 − s1 − 1, N2 − s2 − 1)-level user equilibrium. If
s1 < N1 − 1 and s ∈ D′1 ∪ D′0 then we also have s − e2 + e1 ∈ D′1, since D′

is monotone by construction. We can then apply the argument of Lemma 3.7 to
obtain z1;D′(s−e2) < z2;D′(s−e2). Continuing inductively we obtain z1;D′(s−ke2) <
z2;D′(s−ke2) for k = 0, 1, . . . s2. Thus s−ke2 ∈ D′1 ⇔ z1;D′(s−ke2) < z2;D′(s−ke2),

i.e. D′ is also an (N1 − s1, N2 − s2 − 1) = (N1 − s
(r+1)
1 − 1, N2 − s

(r+1)
2 − 1)-level

user equilibrium, where s(r+1) = (s1 − 1, s2) since s ∈ D′1. A similar argument also
holds for s ∈ D′2. By induction on r, D′ satisfies Definition 2.5 and is therefore a
user equilibrium for the model. �

These two theorems show that a unique user equilibrium exists, and that it is
monotone. These results depend very much on the assumed service discipline. In
[2] similar results were obtained for a system with one batch service queue, and one
M |M |1 queue. However, in [14], the authors study a similar system with parallel
processor sharing queues, where existence and uniqueness issues become more deli-
cate. In that case even when a unique user equilibrium exists, a direct construction
is not possible, and an iterative algorithm starting from an initial policy is needed
to find the user equilibrium.

3.3 Monotonicity of D∗ with respect to parameters: an it-
erative approach

In this section, we adapt the coupling technique of Lemma 3.4 to show that, under
a fixed decision policy D, the expected transit time zi;D(n) via queue i = 1, 2,
is monotone with respect to changes in intrinsic arrival rates and service rates of
the queues. It is also of interest to consider monotonicity properties of the user
equilibria with respect to parameters. In Theorem 3.15, we use an iterative approach
to establish such a property with respect to service rates.

Given a decision policy D ∈ D. We write Z
(i)
D = {Z(i)

D (t)}t≥0 for the process

operating under decision policy D with parameters Γ(i), i = 1, 2, and let z
(i)
2 (n) =
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z2;D(n,Γ(i)).

Lemma 3.11. Let Γ(i) = {λ, σ1, µ1, σ
(i)
2 , µ

(i)
2 , p̃} for i = 1, 2, with σ

(1)
2 ≥ σ

(2)
2 and

µ
(1)
2 ≥ µ

(2)
2 . If D is τ = N2 − (n2 + 1) level monotone for queue 2, then z

(1)
2 (n) ≤

z
(2)
2 (n).

Proof. We construct a joint process {(Y,W )(t)}t≥0 on the state space S × S such

that Y and W follow the laws of Z
(1)
D and Z

(2)
D respectively. Let (Y,W )(0) =(

(Y1, Y2), (W1,W2)
)
(0) = (u,v), where u,v satisfies either of conditions (I) and (II)

in Lemma 3.4. The transitions of the joint process are as follows: ∀ (a,b) ∈ S× S,

(i) At rate σ1 + λ · I{a,b∈D1} + p̃λ · I{a∈D0,b∈D1} + p̃λ · I{a∈D1,b∈D0} + p̃λ · I{a,b∈D0},

(a,b) −→ (a + ẽ1,b + ẽ1).

(ii) At rate σ
(2)
2 + λ · I{a,b∈D2} + (1− p̃)λ · I{a∈D0,b∈D2} + (1− p̃)λ · I{a∈D2,b∈D0} +

(1− p̃)λ · I{a,b∈D0},
(a,b) −→ (a + ẽ2,b + ẽ2).

(iii) At rate σ
(1)
2 − σ

(2)
2 ,

(a,b) −→ (a + ẽ2,b).

(iv) At rate λ · I{a∈D1,b∈D2} + p̃λ · I{a∈D0,b∈D2} + (1− p̃)λ · I{a∈D1,b∈D0},

(a,b) −→ (a + ẽ1,b + ẽ2).

(v) At rate λ · I{a∈D2,b∈D1} + (1− p̃)λ · I{a∈D0,b∈D1} + p̃λ · I{a∈D2,b∈D0},

(a,b) −→ (a + ẽ2,b + ẽ1).

Denote by TX2 (a,b; 0) the marginal hitting time to the set H2 for the system
X ∈ {Y,W}, starting from state (a,b). Let (a′,b′) denote the state of the sys-
tem immediately after a transition out of state (a,b) ∈ S× S.

For cases (i), (ii), (iv) and (v), the discussion in Lemma 3.4 has shown that if
(a,b) satisfies either condition (I) or (II), so does the resulting state (a′,b′). For
case (iii), if a2 = N2 − 1, a′ = (a1, 0) ∈ H2, so that T Y2 (a,b; 0) ≤ TW2 (a,b; 0) holds.
If a2 < N2 − 1, then (a′,b′) =

(
(a1, a2 + 1),b

)
and (a′,b′) preserves whichever

condition was satisfied by (a,b).
Therefore, if (a,b) satisfies either of conditions (I) and (II), so does (a′,b′).

In our case, since u2 ≤ v2, then Y2(t) ≥ W2(t) for all t ∈ [0, T Y2 (u; 0)). Thus

T Y2 (u,v; 0) ≤ TW2 (u,v; 0) almost surely, so T
(1)
2 (u)

st

≤ T
(2)
2 (v). If n2 = N2 − 1,

by (3), z
(1)
2 (n) = 1/µ

(1)
2 ≤ 1/µ

(2)
2 = z

(2)
2 (n). If n2 < N2 − 1, let u = v = (n + e2) so

that (u,v) satisfies condition (I) in Lemma 3.4, then T
(1)
2 (n + e2)

st

≤ T
(2)
2 (n + e2).

Hence z
(1)
2 (n) = E[T

(1)
2 (n + e2)] + 1/µ

(1)
2 ≤ E[T

(2)
2 (n + e2)] + 1/µ

(2)
2 = z

(2)
2 (n). �

Lemma 3.11 compared expected transit times under a fixed policy with different
parameters. The following result compares expected transit times for two different
policies with the parameters fixed.
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Lemma 3.12. Let D(i) ∈ D, i = 1, 2, be two monotone decision policies for
(N1, N2,Γ) such that D

(2)
2 ⊆ D

(1)
2 and D

(2)
1 ⊇ D

(1)
1 . Then z1;D(1)(n) ≥ z1;D(2)(n)

and z2;D(1)(n) ≤ z2;D(2)(n) for n ∈ S.

Proof. We consider the joint process of the two systems {(Y,W )(t)}t≥0 on S × S
where Y and W follow the laws of ZD(1) and ZD(2) respectively. Let (Y,W )(0) =
(u,v) where (u,v) satisfies either condition (I) or (II) in Lemma 3.4. The transitions
out of a state (a,b) ∈ S× S are:

(i) At rate σ1 + λ · I{a∈D(1)
1 ,b∈D(2)

1 }
+ p̃λ · I{a∈D(1)

0 ,b∈D(2)
1 }

+ p̃λ · I{a∈D(1)
1 ,b∈D(2)

0 }
+ p̃λ ·

I{a∈D(1)
0 ,b∈D(2)

0 }
,

(a,b) −→ (a + ẽ1,b + ẽ1).

(ii) At rate σ2+λ·I{a∈D(1)
2 ,b∈D(2)

2 }
+(1−p̃)λ·I{a∈D(1)

0 ,b∈D(2)
2 }

+(1−p̃)λ·I{a∈D(1)
2 ,b∈D(2)

0 }
+

(1− p̃)λ · I{aD(1)
0 ,b∈D(2)

0 }
,

(a,b) −→ (a + ẽ2,b + ẽ2).

(iii) At rate λ · I{a∈D(1)
1 ,b∈D(2)

2 }
+ p̃λ · I{a∈D(1)

0 ,b∈D(2)
2 }

+ (1− p̃)λ · I{a∈D(1)
1 ,b∈D(2)

0 }
,

(a,b) −→ (a + ẽ1,b + ẽ2).

(iv) At rate λ · I{a∈D(1)
2 ,b∈D(2)

1 }
+ (1− p̃)λ · I{a∈D(1)

0 ,b∈D(2)
1 }

+ p̃λ · I{a∈D(1)
2 ,b∈D(2)

0 }
,

(a,b) −→ (a + ẽ2,b + ẽ1).

Let T
(i)
2 (n) = TZ

2;D(i)(n) be the waiting time via queue 2 for a general commuter who
upon arrival sees system ZD(i) in state n. Since the possible transitions are the same

as in Lemma 3.4, we can easily show that T
(1)
2 (u)

st

≤ T
(2)
2 (v) if (u,v) satisfies either

condition (I) or (II) in Lemma 3.4. If n2 = N2−1, then z2;D(1)(n) = z2;D(2)(n) = 1/µ2.
If n2 < N2 − 1, let u = v = n + e2 ∈ S and then, since condition (I) is satisfied,

T
(1)
2 (n + e2)

st

≤ T
(2)
2 (n + e2), and then applying (3), z2;D(1)(n) = E[T

(1)
2 (n + e2)] +

1/µ2 ≤ E[T
(2)
2 (n + e2)] + 1/µ2 = z2;D(2)(n). The first claim follows by interchanging

the labels of the queues. �
The following result follows immediately from Lemmas 3.11 and 3.12.

Lemma 3.13. For i = 1, 2, let Γ(i) = {λ, σ1, µ1, σ
(i)
2 , µ

(i)
2 } be such that σ

(1)
2 ≥ σ

(2)
2

and µ
(1)
2 ≥ µ

(2)
2 , and let D(i) = (D

(i)
1 , D

(i)
2 ) ∈ D be monotone decision policies such

that D
(2)
2 ⊆ D

(1)
2 and D

(2)
1 ⊇ D

(1)
1 . Then z2;D(1)(n; Γ(1)) ≤ z2;D(2)(n; Γ(2)).

The following lemma shows that any decision policy D ∈ D can be “updated”
to a monotone decision policy.

Lemma 3.14. Given a decision policy D ∈ D, and i, k, l ∈ {1, 2} such that k 6= l,
let D′ be the policy such that n ∈ D′1 ⇔ z1;D(n) < z2;D(n) and n ∈ D′0 ⇔ z1;D(n) =
z2;D(n), ∀ n ∈ S. Then each of the following implies that n ∈ D′i.

A. n + ek, n + el ∈ D′i,
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B. n + ek ∈ D′0, n + el ∈ D′i.

Furthermore, D′ is (N1, N2)−level monotone.

Proof. Without loss of generality, let i = 1 (a similar argument will also hold for
i = 2).

There are nine cases to consider, depending on whether n + er ∈ Ds, r = 1, 2
and s = 0, 1, 2. We show the proof for the case n + e1 ∈ D2, n + e2 ∈ D1, and omit
the details for the rest of the eight cases as they can be proved in a very similar
manner.

By (4) and (5),

Λ · z1;D(n) = 1 + σ1z1;D(n + e1) + (λ+ σ2)z1;D(n + e2).

= 1 + (λ+ σ1)z1;D(n + e1) + σ2z1;D(n + e2)︸ ︷︷ ︸
B

+λ[z1;D(n + e2)− z1;D(n + e1)]︸ ︷︷ ︸
>0 by Lemma 3.6

.

Λ · z2;D(n) = 1 + (λ+ σ1)z2;D(n + e1) + σ2z2;D(n + e2).

= 1 + σ1z2;D(n + e1) + (λ+ σ2)z2;D(n + e2)︸ ︷︷ ︸
C

+λ[z2;D(n + e1)− z2;D(n + e2)]︸ ︷︷ ︸
>0 by Lemma 3.6

.

Suppose that k = 1 and l = 2. Then n+e1 ∈ D′1 (condition A) and n+e1 ∈ D′0
(condition B) imply that z1;D(n + e1) ≤ z2;D(n + e1). Also under both conditions,
n + e2 ∈ D′1 ⇔ z1;D(n + e2) < z2;D(n + e2). Thus Λz1;D(n) < C < Λz2;D(n), hence
n ∈ D′1. Similarly, if k = 2 and l = 1, it is easy to show that z2;D(n) > B > z1;D(n),
which also implies n ∈ D′1.

The proof of the monotonicity of D′ is very similar to that of the Theorem 2.8.
Thus, we have completed the proof. �

We now adapt the policy updating idea of Lemma 3.14 to show that D∗ is
monotone with respect to the service rates.

Theorem 3.15. For i = 1, 2, let Γ(i) = {λ, σ1, µ1, σ2, µ
(i)
2 , p̃} be such that µ

(1)
2 ≥ µ

(2)
2 .

Suppose that D∗(i) = {D∗(i)0 , D
∗(i)
1 , D

∗(i)
2 } ∈ D∗ is the user equilibrium policy for the

process operating with parameter Γ(i), then D
∗(1)
1 ⊆ D

∗(2)
1 and D

∗(1)
2 ⊇ D

∗(2)
2 .

Proof. Let G(0) = {G(0)
0 , G

(0)
1 , G

(0)
2 } = D∗(1). We first construct a sequence of decision

policies {G(k), k ∈ N} as follows:

z1;G(k−1)(n; Γ(2)) < z2;G(k−1)(n; Γ(2)) ⇔ n ∈ G(k)
1 , and

z1;G(k−1)(n; Γ(2)) > z2;G(k−1)(n; Γ(2)) ⇔ n ∈ G(k)
2 , ∀ n ∈ S.

By Lemma 3.14, the sequence {G(k), k ∈ N} exists and each decision policy is
(N1, N2)−level monotone.

We claim that G
(k−1)
1 ⊆ G

(k)
1 and G

(k−1)
2 ⊇ G

(k)
2 for each k ∈ N. Assuming

this for the moment, since the number of decision policies |D| is finite, there must

exist an s ∈ N such that G(s−1) = G(s). Therefore, n ∈ G
(s)
1 ⇔ z1;G(s)(n; Γ(2)) =

z1;G(s−1)(n; Γ(2)) < z2;G(s−1)(n; Γ(2)) = z2;G(s)(n; Γ(2)). Similarly, n ∈ G(s)
2 ⇔ z1;G(s)(n; Γ(2)) >

z2;G(s)(n; Γ(2)). Thus G(s) is a user equilibrium of the system by Definition 2.5.
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Theorem 2.7 says that the user equilibrium of a given system is unique. Hence
D∗(2) = G(s) and D

∗(1)
1 ⊆ D

∗(2)
1 and D

∗(1)
2 ⊇ D

∗(2)
2 .

It therefore remains to verify that G
(k−1)
1 ⊆ G

(k)
1 and G

(k−1)
2 ⊇ G

(k)
2 . Notice

that for a given decision policy G(0), the service rate of queue 2 does not affect
the expected time via queue 1. Thus z1;G(0)(n; Γ(1)) = z1;G(0)(n; Γ(2)) . On the

other hand, z2;G(0)(n; Γ(1)) ≤ z2;G(0)(n; Γ(2)) by Lemma 3.11. Now if n ∈ G
(0)
1 ,

z1;G(0)(n; Γ(1)) < z2;G(0)(n; Γ(1)) as G(0) is the user equilibrium for the system with

parameter Γ(1) (Definition 2.5). Thus z1;G(0)(n; Γ(2)) < z2;G(0)(n; Γ(2)) ⇒ n ∈
G

(1)
1 . Similarly, ∀ n ∈ G

(1)
2 , z1;G(0)(n; Γ(1)) = z1;G(0)(n; Γ(2)) > z2;G(0)(n; Γ(2)) ≥

z2;G(0)(n; Γ(1)). Hence, by Definition 2.5, this implies that n ∈ G(0)
2 . This establishes

the claim with k = 1. Proceeding by induction, let k ≥ 1 and suppose that G
(k−1)
1 ⊆

G
(k)
1 , G

(k−1)
2 ⊇ G

(k)
2 . If n ∈ G

(k)
1 , then by Lemma 3.12 and the definition of G(k),

z1;G(k)(n; Γ(2)) ≤ z1;G(k−1)(n; Γ(2)) < z2;G(k−1)(n; Γ(2)) ≤ z2;G(k)(n; Γ(2)). Hence n ∈
G

(k+1)
1 . So G

(k)
1 ⊆ G

(k+1)
1 , and by symmetry we also have G

(k)
2 ⊇ G

(k+1)
2 , as claimed.

�
Theorem 3.15 has proved that the user equilibrium policy is monotone with

respect to the service rates. One would also expect a natural monotone property
with respect to the intrinsic arrival rate, as per the following conjecture.
Conjecture. For i = 1, 2, let Γ(i) = {λ, σ1, µ1, σ

(i)
2 , µ2, p̃} be such that σ

(1)
2 ≥ σ

(2)
2 .

Suppose that D∗(i) = {D∗(i)0 , D
∗(i)
1 , D

∗(i)
2 } ∈ D∗ be the user equilibrium policy for the

process operating with parameter Γ(i), then D
∗(1)
1 ⊆ D

∗(2)
1 and D

∗(1)
2 ⊇ D

∗(2)
2 .

4 Examples and discussion

We have shown that the state dependent user equilibrium policy possesses several
natural monotonicity properties for the system under consideration. In this section
we give some numerical examples illustrating these results, and comparing the ex-
pected transit time for a general customer under the user equilibrium policy with
that obtained under probabilistic routing. The numerical examples below illustrate
that performance under state dependent routing may be considerably better than
under probabilistic routing, although it is not always the case that the expected
delay under state dependent routing is lower than under probabilistic routing. This
section concludes with some discussion and questions for further research.

Under state dependent routing the expected transit time in the stationary
regime under the user equilibrium policy can be easily calculated. Let D∗ =
(D∗0, D

∗
1, D

∗
2) ∈ D∗ be the user equilibrium policy for the network with parame-

ters (N1, N2,Γ) and ~πD∗ = {πD∗(n),n ∈ S} be the stationary distribution of the
system under D∗. Since the state space is finite (and irreducible if all parameters
are positive), ~πD∗ exists. Thus the expected transit time for a general customer in
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the stationary regime under D∗ is

Wdep(D
∗) =

∑
n∈S

πD∗(n)
(
z1;D∗(n) · In∈D∗1 + z2;D∗(n) · In∈D∗2+

(
p̃z1;D∗(n) + (1− p̃)z2;D∗(n)

)
· In∈D∗0 )

)
;

=
∑
n∈S

πD∗(n)
(
z1;D∗(n) · In∈D∗1∪D∗0 + z2;D∗(n) · In∈D∗2

)
,

as n ∈ D∗0 ⇔ z1;D∗(n) = z2;D∗(n).

Figure 2 plots Wdep(D∗) against µ1 for λ = 4, σ1 = 3, σ2 = 1, µ2 = 2, p̃ =
1, N1 = N2 = 5, with µ1 varying from 0.9 to 1.6 in increments of 0.005. We see that
Wdep(D∗) is not, in general, decreasing in µ1. The increases in Wdep(D∗) occur when
D∗ changes. An interesting observation here is that although for a fixed policy the
individual expected transit time via queue i decreases as the service rate to that
queue increases (Lemma 3.11) and the user equilibrium changes monotonically with
respect to the service rates (Theorem 3.15), the overall expected transit for the
system Wdep(D

∗) is not monotone here.
The example here exhibits similar behaviour to the well-known Downs-Thompson

paradox (see for instance Downs [16], Thomson [28], Calvert [12], and Afimeimounga
et al. [1, 2]). In a parallel system with a batch-service queue and a M/M/1 queue,
the paradox arises when increasing the capacity of the M/M/1 queue leads to an
increase in the delay for the overall system as commuters shift from one queue to
the other. Similarly, in our case, as general customers decide to shift their choice of
queue to reduce their individual delay, the system performance may get worse.

Now consider the same system of queues under probabilistic routing. Let Wi(p)
be the expected transit time in equilibrium for a general customer who travels via
queue i, i = 1, 2. Then it is easily seen (see, e.g. [1]) that

W1(p) =
1

µ1

+
N1 − 1

2(σ1 + pλ)
, W2(p) =

1

µ2

+
N2 − 1

2
(
σ2 + (1− p)λ

) .
and the expected transit time for a general customer under probabilistic routing in
the stationary regime is

Wind(p) = pW1(p) + (1− p)W2(p), p ∈ [0, 1].

Thus the Wardrop principle [31] here equates to the following definition.

Definition 4.1. Under probabilistic routing, a user equilibrium p∗ ∈ [0, 1] satisfies
one of the following conditions:

a) W2(0) ≤ W1(0) with p∗ = 0,

b) W1(1) ≤ W2(1) with p∗ = 1,

c) W1(p∗) = W2(p∗) with p∗ ∈ [0, 1].
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Figure 2: An example showing non-monotonicity of Wdep(D∗) when λ = 4, σ1 =
3, σ2 = 1, µ2 = 2, N1 = N2 = 5.

Since W1(p) is a decreasing function in p whereas W2(p) is increasing in p, at
least one of the conditions in Definition 4.1 holds and hence under probabilistic
routing there exists at least one user equilibrium. However, even though the user
equilibrium is unique in the state dependent case (Theorem 2.7), this is not neces-
sarily the case under probabilistic routing. Consider an example with N1 = N2 = 5,
λ = 3, σ1 = 3, σ2 = 1, µ2 = 2 and µ1 equal to 0.2, 1.5 and 3. Figure 3 plots
the expected transit times via each queue, W1(p) and W2(p), as well as the overall
expected transit time through the system under probabilistic routing, Wind(p). For
case A) with µ1 = 0.2 there is one user equilibrium at p∗ = 0; in case B) with
µ1 = 1.5 there are three user equilibria, p∗ = 0, p∗ = 1 and p∗ = 1/3; whereas if
µ1 = 3 (case C), there are two user equilibria at p∗ = 0, 1. The model studied in
Afimeimonga et. al. [1] is another example of a system where multiple user equilibria
are possible under probabilistic routing.

We are also interested in the stability of user equilibria, that is, whether a
user equilibrium p∗ is attracting or not. The idea here is as follows. Suppose a
proportion p ∈ (0, 1) of general arrivals choose queue 1. If W1(p) < W2(p) then
since the expected transit time via queue 1 is lower than via queue 2, over time this
proportion will increase until the expected delay via both queues is equal. Similarly,
if W1(p) > W2(p) then the proportion will decrease until the expected delays are
equal. Now suppose p = p∗ + ε, where p∗ is a user equilibrium. Then, assuming
p changes continuously, if W1(p) > W2(p) for all sufficiently small ε then p∗ is
attracting from above. We need to consider p < p∗ as well, to determine whether p∗

is attracting. A similar idea has also been discussed in Afimeimounga et al. [1], and
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Figure 3: Three cases of user equilibrium p∗ (W1(p)−−−, W2(p) · · · · · · and W (p)—
—), where N1 = N2 = 5, λ = 3, σ1 = 3, σ2 = 1, µ2 = 2 and µ1 is: A) 0.2; B) 1.5;
C) 3.
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we adopt their definition of stability here.

Definition 4.2. Given a state independent user equilibrium of the system p∗, we
say that it is stable if there exists ε > 0 such that

1) W1(p) > W2(p) for p ∈ (p∗,min(p∗ + ε, 1)), and

2) W1(p) < W2(p) for p ∈ (max(p∗ − ε, 0), p∗).

If the system has a user equilibrium at p∗ = 0 and W2(0) < W1(0) then this is
a stable user equilibrium. Similarly, a user equilibrium p∗ = 1 is stable if W1(1) 6=
W2(1). However, any user equilibrium p∗ ∈ (0, 1) will be unstable.

One key feature of the batch-service queue is that the expected delay decreases
as more customers join the queue. It is not surprising that customers tend to follow
the crowd (FTC) to obtain a better payoff (in this case, a shorter delay). The model
here is an example of the general phenomenon discussed in Hassin and Haviv [19],
that under FTC multiple user equilibria may exist, not all of which will be stable.

We give as our final example a comparison of the expected transit time in the
stationary regime for the user equilibrium under probabilistic routing and in the
state dependent setting. Figure 4 plots Wind(p∗) and Wdep(D∗) when N1 = N2 = 5,
λ = 4, µ2 = 2, σ1 = 3, σ2 = 1 for µ1 varying from 0 to 6. For this example,
when µ1 ∈ [0, 0.494), there is a single user equilibrium under probabilistic routing
at p∗ = 0. When µ1 ∈ [4.245,∞) there is also a single user equilibrium under
probabilistic routing, but at p∗ = 1. For µ ∈ (0.494, 4.245), three possible user
equilibria coexist – one at p∗ = 0, another at p∗ = 1, and the third at an intermediate
point. Note that although the delay under the state-dependent user equilibrium is,
in general, lower than under probabilistic routing, and occasionally substantially
lower, there is nevertheless a region where the stable equilibrium at p∗ = 0 gives
lower expected delay than under the state dependent equilibrium. Unlike system
optimal policies, state dependent user equilibrium policies do not always have lower
expected delays than under probabilistic routing, but in this example we see that
under the state dependent user equilibrium policy the worst effects of probabilistic
routing are no longer apparent.

There are several possible extensions to the model under consideration. The
first natural extension, which we have not considered, is to generalize the times at
which service may begin. As mentioned earlier, it may be more natural in many ap-
plications, to permit service commencements before a batch is completed. One way
of doing this, as discussed in [2], would be to allow service to begin with probability
s(i, j) when an arrival finds the system in state (i, j), 0 ≤ i ≤ N1, 0 ≤ j ≤ N2, with
the s(i, j) increasing in both i and j, and s(i, N2 − 1) = 1, s(N1 − 1, j) = 1. This is
left for further development.

We have also not considered here a comparison with socially optimal policies –
do these possess similar structural properties, and how much does performance of
the system improve by using a system rather than user optimal policy.

Similar routing problems can also be considered for queues with other service
disciplines where decisions made by later arrivals affect delays experienced by users.
A queueing discipline of particular interest here is processor-sharing. In this case,
it is not possible to find user equilibrium policies by direct construction, and it is
necessary to use an iterative approach to infer properties of user equilibrium policies.
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Figure 4: Comparison of the expected transit time for probabilistic routing
(Wind(p∗)) vs. state dependent routing (Wdep(D∗)). N1 = N2 = 5, σ2 = 1, µ2 = 2.
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We address this in a forthcoming paper [14] where we will also give examples of user
optimal policies that are not monotone.

Finally, an even more general question is the extent to which uniqueness, mono-
tonicity and other structural properties hold for broader classes of systems. The
simplest extension is to larger systems of parallel queues, but even for these the
coupling arguments used here are not straightforward, since general customers now
have more alternatives from which to choose.
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